Appendix

Proof of Theorem 1

First, we prove the order of singular values is preserved in a neighborhood of the rank-r matrix M. Using
Weyl’s theorem, we have

loi(M + A) — 0| < || Al g, for 1 <i<n.

< ZiZZitl the following inequality holds

For any ¢ such that o; > o;11: since [|A||z < 5,

£
2

O'Z'+1(M+A) <0i+1+%:dif% <O’1(M+A)

Thus, the order of singular values is preserved. Moreover, since o.(M + A) — o.41(M + A) > 0, the top r
singular value components are unique and consequently P,.(M + A) is unique.

Let M = Y7_, oyu;v] be the rank-r matrix of interest. From matrix perturbation theory [1], we can
describe the decomposition of the perturbed matrix

M+ A= Z(Ui +65) (ug + 0uy) (vs + 0vy) T + Z 8i(ui + 6u;)(v; + dv;) T (1)
=1 i=r+1

where §;, 0u;, and dv; have norms in the order of O(||A||z). Since the top-r singular values of M are
preserved under perturbation, we have P,(M + A) = >°7_ (0; + &) (u; + du;)(v; + dv;)T and (1) can be
reorganized as

Pe(M+A) =M =A= 3" 6(u; +0u;)(vi +0vi)" = A= > widiw] +O(|A]7). (2)
i=r+1 1=r+1
Further, substituting M = Y"7_, o;u;v} into (1) yields

A:

g

(5iuivf+cr,-§uw? JFO'iUi(SUiT) +O(HA||§)
1

Then using the orthogonality of u;,v;, we can obtain
ul Av; = §; + a3 (ul Su; + v, v;) + O(||Al|7), (3)
uf vy = O(|A[7). (4)
The second term on the RHS can be computed as follows
- T T T T 2 T 2
I:Z(ui—i—éui)(ui—l—éui) = 1=uju; =1+u; ou; +du;” u; + O(| Al %) = u; ou; = O(||Al%)
i=1
Similarly, we also have v7dv; = O(||A[|%). Substituting back to (3), we get d; = ul Av; + O(|A[|%). Thus,
(2) can be rewritten as
Pr(M+A) =M =A- > uu! Ml +O(|A7) = A= DU AVRVY + O(|A7).
i=r+1

where the last equation stems from (4).



Proof of Theorem 3

Vectorizing Theorem 1 yields
vec(Pp(M + A) = M) = (I — (Va @ Us)(Va @ Us) ") vec(A) + g(vec(A)) (5)
where g(vec(A)) = vec(Q(A)). From the IHT update, the error matrix is

E® = x® _pp=p, (X(k‘l) —a[x®*-D - M]S) ~M="P, (M + Bk a[E(k_l)]s) ~ M.

From (5), we have

e = vec(BEW) = (Iy = WWT) vee(B®™D — o[ E®V]s) + g(vee(BW™Y — o EF V)
= (Imn — WWT) (L, — OzSTS)e(k_l) + q((Imn _ ozSTS)e(k_l))

= = WWT)((1 )y + 75,060 4 Ca(e)

= (Imn — (I = WWT) (L — STSe) + ;WWT)>6(’“_1) + Chg(e®=1)
where W =V, @ Uy € R > (m=1)(n=7) and () is some positive constant. Now, denote
Zo = (I — WW) (I — STS,) + éWWT.
Using Lemma 10 in [2], we obtain the upper bound
Rr——— |

where p(I1,, — aZ,) is the spectral radius of I,,, — aZ, and is equal to the maximum magnitude of any
eigenvalue of I,,, — aZ,. Denote A\ > Ay > ... > A\, > 0 are eigenvalues of Z, and assume that 7, is
diagonalizable. Then, finding optimal step size « is equivalent to solving the following problem

i 1—a)l.
Hgnlgnjlgﬁn\ )| (6)

The solution of the optimization problem (6) is given by a = )\1% and the optimal rate p(I — aZ,) =

mn
A1 =Amn

S Now, using the following lemma to simplify the calculation of \;, we obtain \; = L and A, = p.

Lemma 1. For any A € A(Z,), we have either A\ =1 or A\=1 or A € A(H), where H = S.WW7ST.

Proof. For any X € A((Imn —WWT) (I, — SES.) + éWWT), there exists v € C™", v # 0 such that

1
((Imn CWWT) (L — STS,) + aWWT)U = . (7)
Left-multiplying both sides with (I,,,, — WW7) and recall that W W = I —r)(n—r), We have
(Iin — WWI) (I — SES )0 = M — WW 0.

Substituting back into (7), we get

AT — WWTw + LywTo = xo = (l - O)Wwhy =o0.
[0 «

Hence, we have either A\ = i or WWTy = 0. In the later case, we can substitute into (7) again to obtain
Mo = (I — WWH) (L — STS)v = (Iypn — STS. + WWTSTS, ). (8)

Left-multiplying both sides with S. and recall that S.S = I,,,,,_s, we have SSWWT ST (S.v) = A\(S.v). If
S.v = 0, then plugging into (8) yields A = 1. Otherwise, we have A € A(S.WW7TST). This completes our
proof of the lemma. O



Proof of Theorem 4

The error matrix can be represented as follows
BOHD = X040 — pf = P, (X0 — a[x®) — Mg ) + B(X® — X*-0) — M
= (P (M + B® — a[EW]s) - M) + 5(E® — (BE-D).
Similarly to Theorem 3, we can vectorize the above equation as
el — (Imn - aZa>e(k) + 8™ — e* =Dy 4 Crg(e™).
By stacking e*t1) and e®) together, the recursion can be rewritten as follows

elk+1) (14 B)onn — aZo  —BLn| | e® Ciq(e®)

e(k) Ion 0 etk=1) 0

T

Now, using Lemma 10 in [2], we obtain the upper bound

e(k+1)

wll fe®
< (p(T)+o(1
o || = emromyt| |
2 2

where p(T) is the spectral radius of T. Assume that Z, is diagonalizable, then T is similar to a block
diagonal matrix with 2 x 2 block T} of the form 1

1—|—ﬁ—oz)\j —,B
1 0

for j =1,...,mn. Thus, the eigenvalues of 1" are also the eigenvalues of all blocks T;. Finding optimal step
size (8 is equivalent to solving the following problem

miﬁnmax|r| such that 7> — (1 + 8 — a)\;)r + 8 =0, for some j € {1,...,mn}. 9)

Since A = (1 + 3 — a))? — 48, it is easy to verify that
e if A <0, then |o1| = |o2| = /|8,
e if A >0, then max{|o1],|o2]} > +/IB].

The optimization (9) becomes

mig}\/B st. (1+8—a))?—4B8<0forall1<j<mn

& miélmax‘l - \/a)\j’ st. B> (1—+/a);)? forall 1 < j < mn. (10)
af

The solution of the optimization problem (10) is given by

2

0= (=)t e (YR’
)\1 + )\mn ’ )\1 + )\mn .
Finally, we obtain the optimal rate p(T') = \/‘/1:;7\/7 Vim" Now, using Lemma 1, we obtain Ay = L and \,,,,, = pi.

1This is shown by performing a change of basis on orthogonal space of H, following by permutations on rows and columns.
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