
Appendix

Proof of Theorem 1

First, we prove the order of singular values is preserved in a neighborhood of the rank-r matrix M . Using
Weyl’s theorem, we have

|σi(M + ∆)− σi| ≤ ‖∆‖F , for 1 ≤ i ≤ n.

For any i such that σi > σi+1: since ‖∆‖F <
ε
2 ≤

σi−σi+1

2 , the following inequality holds

σi+1(M + ∆) < σi+1 +
σi − σi+1

2
= σi −

σi − σi+1

2
< σi(M + ∆).

Thus, the order of singular values is preserved. Moreover, since σr(M + ∆) − σr+1(M + ∆) > 0, the top r
singular value components are unique and consequently Pr(M + ∆) is unique.

Let M =
∑r
i=1 σiuiv

T
i be the rank-r matrix of interest. From matrix perturbation theory [1], we can

describe the decomposition of the perturbed matrix

M + ∆ =

r∑
i=1

(σi + δi)(ui + δui)(vi + δvi)
T +

n∑
i=r+1

δi(ui + δui)(vi + δvi)
T (1)

where δi, δui, and δvi have norms in the order of O(‖∆‖F ). Since the top-r singular values of M are
preserved under perturbation, we have Pr(M + ∆) =

∑r
i=1(σi + δi)(ui + δui)(vi + δvi)

T and (1) can be
reorganized as

Pr(M + ∆)−M = ∆−
n∑

i=r+1

δi(ui + δui)(vi + δvi)
T = ∆−

n∑
i=r+1

uiδiv
T
i +O(‖∆‖2F ). (2)

Further, substituting M =
∑r
i=1 σiuiv

T
i into (1) yields

∆ =

n∑
i=1

(
δiuiv

T
i + σiδuiv

T
i + σiuiδvi

T
)

+O(‖∆‖2F ).

Then using the orthogonality of ui, vi, we can obtain

uTi ∆vi = δi + σi(u
T
i δui + δvi

T vi) +O(‖∆‖2F ), (3)

uTi ∆vj = O(‖∆‖2F ). (4)

The second term on the RHS can be computed as follows

I =

n∑
i=1

(ui + δui)(ui + δui)
T ⇒ 1 = uTi ui = 1 + uTi δui + δui

Tui +O(‖∆‖2F ) ⇒ uTi δui = O(‖∆‖2F )

Similarly, we also have vTi δvi = O(‖∆‖2F ). Substituting back to (3), we get δi = uTi ∆vi + O(‖∆‖2F ). Thus,
(2) can be rewritten as

Pr(M + ∆)−M = ∆−
n∑

i=r+1

uiu
T
i ∆viv

T
i +O(‖∆‖2F ) = ∆− U2U

T
2 ∆V2V

T
2 +O(‖∆‖2F ).

where the last equation stems from (4).
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Proof of Theorem 3

Vectorizing Theorem 1 yields

vec(Pr(M + ∆)−M) = (Imn − (V2 ⊗ U2)(V2 ⊗ U2)T ) vec(∆) + q(vec(∆)) (5)

where q(vec(∆)) = vec(Q(∆)). From the IHT update, the error matrix is

E(k) = X(k) −M = Pr
(
X(k−1) − α[X(k−1) −M ]S

)
−M = Pr

(
M + E(k−1) − α[E(k−1)]S

)
−M.

From (5), we have

e(k) = vec(E(k)) = (Imn −WWT ) vec(E(k−1) − α[E(k−1)]S) + q
(

vec(E(k−1) − α[E(k−1)]S)
)

= (Imn −WWT )(Imn − αSTS)e(k−1) + q
(
(Imn − αSTS)e(k−1)

)
= (Imn −WWT )((1− α)Imn + αSTc Sc)e

(k−1) + C1q(e
(k−1))

=

(
Imn − α

(
(Imn −WWT )(Imn − STc Sc) +

1

α
WWT

))
e(k−1) + C1q(e

(k−1))

where W = V2 ⊗ U2 ∈ Rmn×(m−r)(n−r) and C1 is some positive constant. Now, denote

Zα = (Imn −WWT )(Imn − STc Sc) +
1

α
WWT .

Using Lemma 10 in [2], we obtain the upper bound∥∥∥e(k)∥∥∥
2
≤
(
ρ(Imn − αZα) + o(1)

)k ∥∥∥e(0)∥∥∥
2

where ρ(Imn − αZα) is the spectral radius of Imn − αZα and is equal to the maximum magnitude of any
eigenvalue of Imn − αZα. Denote λ1 ≥ λ2 ≥ . . . ≥ λmn ≥ 0 are eigenvalues of Zα and assume that Zα is
diagonalizable. Then, finding optimal step size α is equivalent to solving the following problem

min
α

max
1≤j≤mn

|1− αλj | . (6)

The solution of the optimization problem (6) is given by α = 2
λ1+λmn

and the optimal rate ρ(I − αZα) =
λ1−λmn

λ1+λmn
. Now, using the following lemma to simplify the calculation of λj , we obtain λ1 = L and λmn = µ.

Lemma 1. For any λ ∈ Λ(Zα), we have either λ = 1
α or λ = 1 or λ ∈ Λ(H), where H = ScWWTSTc .

Proof. For any λ ∈ Λ
(

(Imn −WWT )(Imn − STc Sc) + 1
αWWT

)
, there exists v ∈ Cmn, v 6= 0 such that(

(Imn −WWT )(Imn − STc Sc) +
1

α
WWT

)
v = λv. (7)

Left-multiplying both sides with (Imn −WWT ) and recall that WTW = I(m−r)(n−r), we have

(Imn −WWT )(Imn − STc Sc)v = λ(Imn −WWT )v.

Substituting back into (7), we get

λ(Imn −WWT )v +
1

α
WWT v = λv ⇒ (

1

α
− λ)WWT v = 0.

Hence, we have either λ = 1
α or WWT v = 0. In the later case, we can substitute into (7) again to obtain

λv = (Imn −WWT )(Imn − STc Sc)v = (Imn − STc Sc +WWTSTc Sc)v. (8)

Left-multiplying both sides with Sc and recall that ScS
T
c = Imn−s, we have ScWWTSTc (Scv) = λ(Scv). If

Scv = 0, then plugging into (8) yields λ = 1. Otherwise, we have λ ∈ Λ(ScWWTSTc ). This completes our
proof of the lemma.

2



Proof of Theorem 4

The error matrix can be represented as follows

E(k+1) = X(k+1) −M = Pr
(
X(k) − α[X(k) −M ]S

)
+ β(X(k) −X(k−1))−M

=
(
Pr
(
M + E(k) − α[E(k)]S

)
−M

)
+ β

(
E(k) − (E(k−1)

)
.

Similarly to Theorem 3, we can vectorize the above equation as

e(k+1) =
(
Imn − αZα

)
e(k) + β(e(k) − e(k−1)) + C1q(e

(k)).

By stacking e(k+1) and e(k) together, the recursion can be rewritten as followse(k+1)

e(k)

 =

(1 + β)Imn − αZα −βImn
Imn 0


︸ ︷︷ ︸

T

 e(k)

e(k−1)

+

C1q(e
(k))

0

 .

Now, using Lemma 10 in [2], we obtain the upper bound∥∥∥∥∥∥
e(k+1)

e(k)

∥∥∥∥∥∥
2

≤
(
ρ(T ) + o(1)

)k ∥∥∥∥∥∥
e(1)
e(0)

∥∥∥∥∥∥
2

where ρ(T ) is the spectral radius of T . Assume that Zα is diagonalizable, then T is similar to a block
diagonal matrix with 2× 2 block Tj of the form 11 + β − αλj −β

1 0


for j = 1, . . . ,mn. Thus, the eigenvalues of T are also the eigenvalues of all blocks Tj . Finding optimal step
size β is equivalent to solving the following problem

min
α,β

max |r| such that r2 − (1 + β − αλj)r + β = 0, for some j ∈ {1, . . . ,mn}. (9)

Since ∆ = (1 + β − αλ)2 − 4β, it is easy to verify that

• if ∆ ≤ 0, then |σ1| = |σ2| =
√
|β|,

• if ∆ > 0, then max{|σ1| , |σ2|} >
√
|β|.

The optimization (9) becomes

min
α,β

√
β s.t. (1 + β − αλj)2 − 4β ≤ 0 for all 1 ≤ j ≤ mn

⇔ min
α,β

max
j

∣∣∣1−√αλj∣∣∣ s.t. β ≥ (1−
√
αλj)

2 for all 1 ≤ j ≤ mn. (10)

The solution of the optimization problem (10) is given by

α =
( 2√

λ1 +
√
λmn

)2
, β =

(√λ1 −√λmn√
λ1 +

√
λmn

)2
.

Finally, we obtain the optimal rate ρ(T ) =
√
λ1−
√
λmn√

λ1+
√
λmn

. Now, using Lemma 1, we obtain λ1 = L and λmn = µ.

1This is shown by performing a change of basis on orthogonal space of H, following by permutations on rows and columns.
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