Appendix

Proof of Theorem 1

First, we prove the order of singular values is preserved in a neighborhood of the rank-r matrix M. Using Weyl's theorem, we have

$$|\sigma_i(M + \Delta) - \sigma_i| \le ||\Delta||_F$$
, for $1 \le i \le n$.

For any *i* such that $\sigma_i > \sigma_{i+1}$: since $\|\Delta\|_F < \frac{\epsilon}{2} \le \frac{\sigma_i - \sigma_{i+1}}{2}$, the following inequality holds

$$\sigma_{i+1}(M+\Delta) < \sigma_{i+1} + \frac{\sigma_i - \sigma_{i+1}}{2} = \sigma_i - \frac{\sigma_i - \sigma_{i+1}}{2} < \sigma_i(M+\Delta).$$

Thus, the order of singular values is preserved. Moreover, since $\sigma_r(M + \Delta) - \sigma_{r+1}(M + \Delta) > 0$, the top r

singular value components are unique and consequently $\mathcal{P}_r(M + \Delta)$ is unique. Let $M = \sum_{i=1}^r \sigma_i u_i v_i^T$ be the rank-*r* matrix of interest. From matrix perturbation theory [1], we can describe the decomposition of the perturbed matrix

$$M + \Delta = \sum_{i=1}^{r} (\sigma_i + \delta_i)(u_i + \delta u_i)(v_i + \delta v_i)^T + \sum_{i=r+1}^{n} \delta_i(u_i + \delta u_i)(v_i + \delta v_i)^T$$
(1)

where $\delta_i, \delta u_i$, and δv_i have norms in the order of $O(\|\Delta\|_F)$. Since the top-*r* singular values of *M* are preserved under perturbation, we have $\mathcal{P}_r(M + \Delta) = \sum_{i=1}^r (\sigma_i + \delta_i)(u_i + \delta u_i)(v_i + \delta v_i)^T$ and (1) can be reorganized as

$$\mathcal{P}_{r}(M+\Delta) - M = \Delta - \sum_{i=r+1}^{n} \delta_{i}(u_{i} + \delta u_{i})(v_{i} + \delta v_{i})^{T} = \Delta - \sum_{i=r+1}^{n} u_{i}\delta_{i}v_{i}^{T} + O(\|\Delta\|_{F}^{2}).$$
(2)

Further, substituting $M = \sum_{i=1}^{r} \sigma_i u_i v_i^T$ into (1) yields

$$\Delta = \sum_{i=1}^{n} \left(\delta_i u_i v_i^T + \sigma_i \delta u_i v_i^T + \sigma_i u_i \delta v_i^T \right) + O(\|\Delta\|_F^2).$$

Then using the orthogonality of u_i, v_i , we can obtain

$$u_i^T \Delta v_i = \delta_i + \sigma_i (u_i^T \delta u_i + \delta v_i^T v_i) + O(\|\Delta\|_F^2),$$
(3)

$$u_i^T \Delta v_j = O(\|\Delta\|_F^2). \tag{4}$$

The second term on the RHS can be computed as follows

$$I = \sum_{i=1}^{n} (u_i + \delta u_i)(u_i + \delta u_i)^T \qquad \Rightarrow 1 = u_i^T u_i = 1 + u_i^T \delta u_i + \delta u_i^T u_i + O(\|\Delta\|_F^2) \qquad \Rightarrow u_i^T \delta u_i = O(\|\Delta\|_F^2)$$

Similarly, we also have $v_i^T \delta v_i = O(\|\Delta\|_F^2)$. Substituting back to (3), we get $\delta_i = u_i^T \Delta v_i + O(\|\Delta\|_F^2)$. Thus, (2) can be rewritten as

$$\mathcal{P}_{r}(M+\Delta) - M = \Delta - \sum_{i=r+1}^{n} u_{i} u_{i}^{T} \Delta v_{i} v_{i}^{T} + O(\|\Delta\|_{F}^{2}) = \Delta - U_{2} U_{2}^{T} \Delta V_{2} V_{2}^{T} + O(\|\Delta\|_{F}^{2}).$$

where the last equation stems from (4).

Proof of Theorem 3

Vectorizing Theorem 1 yields

$$\operatorname{vec}(\mathcal{P}_r(M+\Delta) - M) = (I_{mn} - (V_2 \otimes U_2)(V_2 \otimes U_2)^T)\operatorname{vec}(\Delta) + q(\operatorname{vec}(\Delta))$$
(5)

where $q(\operatorname{vec}(\Delta)) = \operatorname{vec}(Q(\Delta))$. From the IHT update, the error matrix is

$$E^{(k)} = X^{(k)} - M = \mathcal{P}_r \Big(X^{(k-1)} - \alpha [X^{(k-1)} - M]_{\mathcal{S}} \Big) - M = \mathcal{P}_r \Big(M + E^{(k-1)} - \alpha [E^{(k-1)}]_{\mathcal{S}} \Big) - M.$$

From (5), we have

$$e^{(k)} = \operatorname{vec}(E^{(k)}) = (I_{mn} - WW^T) \operatorname{vec}(E^{(k-1)} - \alpha[E^{(k-1)}]_{\mathcal{S}}) + q\left(\operatorname{vec}(E^{(k-1)} - \alpha[E^{(k-1)}]_{\mathcal{S}})\right)$$

$$= (I_{mn} - WW^T)(I_{mn} - \alpha S^T S)e^{(k-1)} + q\left((I_{mn} - \alpha S^T S)e^{(k-1)}\right)$$

$$= (I_{mn} - WW^T)((1 - \alpha)I_{mn} + \alpha S_c^T S_c)e^{(k-1)} + C_1q(e^{(k-1)})$$

$$= \left(I_{mn} - \alpha\left((I_{mn} - WW^T)(I_{mn} - S_c^T S_c) + \frac{1}{\alpha}WW^T\right)\right)e^{(k-1)} + C_1q(e^{(k-1)})$$

where $W = V_2 \otimes U_2 \in \mathbb{R}^{mn \times (m-r)(n-r)}$ and C_1 is some positive constant. Now, denote

$$Z_{\alpha} = (I_{mn} - WW^T)(I_{mn} - S_c^T S_c) + \frac{1}{\alpha}WW^T.$$

Using Lemma 10 in [2], we obtain the upper bound

$$\left\|e^{(k)}\right\|_{2} \leq \left(\rho(I_{mn} - \alpha Z_{\alpha}) + o(1)\right)^{k} \left\|e^{(0)}\right\|_{2}$$

where $\rho(I_{mn} - \alpha Z_{\alpha})$ is the spectral radius of $I_{mn} - \alpha Z_{\alpha}$ and is equal to the maximum magnitude of any eigenvalue of $I_{mn} - \alpha Z_{\alpha}$. Denote $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_{mn} \geq 0$ are eigenvalues of Z_{α} and assume that Z_{α} is diagonalizable. Then, finding optimal step size α is equivalent to solving the following problem

$$\min_{\alpha} \max_{1 \le j \le mn} |1 - \alpha \lambda_j|.$$
(6)

The solution of the optimization problem (6) is given by $\alpha = \frac{2}{\lambda_1 + \lambda_{mn}}$ and the optimal rate $\rho(I - \alpha Z_{\alpha}) = \frac{\lambda_1 - \lambda_{mn}}{\lambda_1 + \lambda_{mn}}$. Now, using the following lemma to simplify the calculation of λ_j , we obtain $\lambda_1 = L$ and $\lambda_{mn} = \mu$.

Lemma 1. For any $\lambda \in \Lambda(Z_{\alpha})$, we have either $\lambda = \frac{1}{\alpha}$ or $\lambda = 1$ or $\lambda \in \Lambda(H)$, where $H = S_c W W^T S_c^T$.

Proof. For any $\lambda \in \Lambda\left((I_{mn} - WW^T)(I_{mn} - S_c^T S_c) + \frac{1}{\alpha}WW^T\right)$, there exists $v \in \mathbb{C}^{mn}, v \neq \mathbf{0}$ such that

$$\left((I_{mn} - WW^T)(I_{mn} - S_c^T S_c) + \frac{1}{\alpha} WW^T \right) v = \lambda v.$$
(7)

Left-multiplying both sides with $(I_{mn} - WW^T)$ and recall that $W^TW = I_{(m-r)(n-r)}$, we have

$$(I_{mn} - WW^T)(I_{mn} - S_c^T S_c)v = \lambda(I_{mn} - WW^T)v.$$

Substituting back into (7), we get

$$\lambda (I_{mn} - WW^T)v + \frac{1}{\alpha}WW^Tv = \lambda v \qquad \Rightarrow \qquad (\frac{1}{\alpha} - \lambda)WW^Tv = \mathbf{0}$$

Hence, we have either $\lambda = \frac{1}{\alpha}$ or $WW^T v = 0$. In the later case, we can substitute into (7) again to obtain

$$\lambda v = (I_{mn} - WW^T)(I_{mn} - S_c^T S_c)v = (I_{mn} - S_c^T S_c + WW^T S_c^T S_c)v.$$
(8)

Left-multiplying both sides with S_c and recall that $S_c S_c^T = I_{mn-s}$, we have $S_c W W^T S_c^T (S_c v) = \lambda(S_c v)$. If $S_c v = \mathbf{0}$, then plugging into (8) yields $\lambda = 1$. Otherwise, we have $\lambda \in \Lambda(S_c W W^T S_c^T)$. This completes our proof of the lemma.

Proof of Theorem 4

The error matrix can be represented as follows

$$E^{(k+1)} = X^{(k+1)} - M = \mathcal{P}_r \Big(X^{(k)} - \alpha [X^{(k)} - M]_{\mathcal{S}} \Big) + \beta (X^{(k)} - X^{(k-1)}) - M$$
$$= \Big(\mathcal{P}_r \big(M + E^{(k)} - \alpha [E^{(k)}]_{\mathcal{S}} \big) - M \Big) + \beta \Big(E^{(k)} - (E^{(k-1)}) \Big).$$

Similarly to Theorem 3, we can vectorize the above equation as

$$e^{(k+1)} = \left(I_{mn} - \alpha Z_{\alpha}\right)e^{(k)} + \beta(e^{(k)} - e^{(k-1)}) + C_1q(e^{(k)}).$$

By stacking $e^{(k+1)}$ and $e^{(k)}$ together, the recursion can be rewritten as follows

$$\begin{bmatrix} e^{(k+1)} \\ e^{(k)} \end{bmatrix} = \underbrace{\begin{bmatrix} (1+\beta)I_{mn} - \alpha Z_{\alpha} & -\beta I_{mn} \\ I_{mn} & \mathbf{0} \end{bmatrix}}_{T} \begin{bmatrix} e^{(k)} \\ e^{(k-1)} \end{bmatrix} + \begin{bmatrix} C_1 q(e^{(k)}) \\ 0 \end{bmatrix}.$$

Now, using Lemma 10 in [2], we obtain the upper bound

$$\left\| \begin{bmatrix} e^{(k+1)} \\ e^{(k)} \end{bmatrix} \right\|_{2} \le \left(\rho(T) + o(1) \right)^{k} \left\| \begin{bmatrix} e^{(1)} \\ e^{(0)} \end{bmatrix} \right\|_{2}$$

where $\rho(T)$ is the spectral radius of T. Assume that Z_{α} is diagonalizable, then T is similar to a block diagonal matrix with 2×2 block T_j of the form ¹

$$\begin{bmatrix} 1+\beta-\alpha\lambda_j & -\beta\\ 1 & 0 \end{bmatrix}$$

for j = 1, ..., mn. Thus, the eigenvalues of T are also the eigenvalues of all blocks T_j . Finding optimal step size β is equivalent to solving the following problem

$$\min_{\alpha,\beta} \max |r| \text{ such that } r^2 - (1 + \beta - \alpha \lambda_j)r + \beta = 0, \text{ for some } j \in \{1, \dots, mn\}.$$
(9)

Since $\Delta = (1 + \beta - \alpha \lambda)^2 - 4\beta$, it is easy to verify that

- if $\Delta \leq 0$, then $|\sigma_1| = |\sigma_2| = \sqrt{|\beta|}$,
- if $\Delta > 0$, then $\max\{|\sigma_1|, |\sigma_2|\} > \sqrt{|\beta|}$.

The optimization (9) becomes

$$\min_{\alpha,\beta} \sqrt{\beta} \qquad \text{s.t.} \ (1+\beta-\alpha\lambda_j)^2 - 4\beta \le 0 \text{ for all } 1\le j\le mn$$

$$\Leftrightarrow \qquad \min_{\alpha,\beta} \max_j \left|1-\sqrt{\alpha\lambda_j}\right| \qquad \text{s.t.} \ \beta \ge (1-\sqrt{\alpha\lambda_j})^2 \text{ for all } 1\le j\le mn. \tag{10}$$

The solution of the optimization problem (10) is given by

$$\alpha = \left(\frac{2}{\sqrt{\lambda_1} + \sqrt{\lambda_{mn}}}\right)^2, \qquad \beta = \left(\frac{\sqrt{\lambda_1} - \sqrt{\lambda_{mn}}}{\sqrt{\lambda_1} + \sqrt{\lambda_{mn}}}\right)^2.$$

Finally, we obtain the optimal rate $\rho(T) = \frac{\sqrt{\lambda_1} - \sqrt{\lambda_{mn}}}{\sqrt{\lambda_1} + \sqrt{\lambda_{mn}}}$. Now, using Lemma 1, we obtain $\lambda_1 = L$ and $\lambda_{mn} = \mu$.

¹This is shown by performing a change of basis on orthogonal space of H, following by permutations on rows and columns.

References

- F. Li and R.-J. Vaccaro, "Unified analysis for DOA estimation algorithms in array signal processing," Signal Processing, vol. 22, pp. 147–169, 1991.
- [2] B. Polyak, "Some methods of speeding up the convergence of iteration methods," in Ussr Computational Mathematics and Mathematical Physics, 1964, vol. 4, pp. 1–17.